Photoswitching a molecular catalyst to regulate CO2 hydrogenation.
نویسندگان
چکیده
Inspired by nature's ability to regulate catalysis using physiological stimuli, azobenzene was incorporated into Rh(bis)diphosphine CO2 hydrogenation catalysts to photoinitiate structural changes to modulate the resulting catalytic activity. The rhodium bound diphosphine ligands (P(Ph2)-CH2-N(R)-CH2-P(Ph2)) contain the terminal amine of a non-natural amino acid, with the R-group being either β-alanine (β-Ala) or γ-aminobutyric acid (GABA). For both β-Ala and GABA containing complexes, the carboxylic acids of the amino acids were coupled to the amines of diaminoazobenzene, creating a complex consisting of a rhodium bound to a photo-responsive tetradentate ligand. The photo-induced cis-trans isomerization of the azobenzene-containing complexes imposes structural changes on these complexes, as evidenced by NMR studies. We found that the CO2 hydrogenation activity for the β-Ala bound rhodium complex is 40% faster at 27 °C with the light on, i.e. azobenzene in the cis-conformation (TOF = 16 s(-1)) than when the complex was in the dark and the azobenzene in the trans-conformation (TOF = 11 s(-1)). In contrast the γ-aminobutyric acid containing rhodium complex has the same rate (TOF ∼17 s(-1)) with the azobenzene in either the cis or the trans-conformation at 27 °C. The corresponding (bis)diphosphine complexes without the attached azobenzene were also prepared, characterized, and catalytically tested for comparison, and have TOF's of 30 s(-1). Computational studies were undertaken to evaluate if the difference in rate between the cis- and trans-azobenzene isomers for the β-Ala bound rhodium complex were due to structural differences. These computational investigations revealed major structural changes between all cis- and trans-azobenzene structures, but only minor structural changes that would be unique to the β-Ala bound rhodium complex. We postulate that the different rates between the cis- and trans-azobenzene β-Ala bound containing rhodium complexes are due to subtle changes in the bite angle arising from steric strain due to the azobenzene-containing tetradentate ligand. This strain alters the hydricity of the subsequent rhodium hydride and consequently the rate.
منابع مشابه
Cu-Mo2C/MCM-41: An Efficient Catalyst for the Selective Synthesis of Methanol from CO2
Supported molybdenum carbide (yMo2C/M41) and Cu-promoted molybdenum carbide, using a mechanical mixing and co-impregnation method (xCuyMo2C/M41-M and xCuyMo2C/M41-I) on a mesoporous molecular sieve MCM-41, were prepared by temperature-programmed carburization method in a CO/H2 atmosphere at 1073 K, and their catalytic performances were tested for CO2 hydrogenation to form methanol. Both catalys...
متن کاملPhotoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight
Photoreduction of CO2 with water into valuable organic compounds under concentrated sunlight as well as Xeor Hg-lamp irradiation was investigated using a Pt-loaded potassium hexatitanate (K2Ti6O13) photocatalyst or a composite catalyst in which the Pt-K2Ti6O13 photocatalyst was combined with a CO2 hydrogenation catalyst of Cu/ZnO. When the Pt-K2Ti6O13 photocatalyst was used under Xeor Hg-lamp i...
متن کاملHydrogenation of Anthracene in Supercritical Carbon Dioxide Solvent Using Ni Supported on Hβ-Zeolite Catalyst
Catalytic hydrogenation of anthracene was studied over Ni supported on Hβ-zeolite catalyst under supercritical carbon dioxide (sc-CO2) solvent. Hydrogenation of anthracene in sc-CO2 yielded 100% conversion at 100 °C, which is attributed to the reduced mass transfer limitations, and increased solubility of H2 and substrate in the reaction medium. The total pressure of 7 MPa was found to be optim...
متن کاملA highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol
Although methanol synthesis via CO hydrogenation has been industrialized, CO2 hydrogenation to methanol still confronts great obstacles of low methanol selectivity and poor stability, particularly for supported metal catalysts under industrial conditions. We report a binary metal oxide, ZnO-ZrO2 solid solution catalyst, which can achieve methanol selectivity of up to 86 to 91% with CO2 single-p...
متن کاملCopper Nanocrystals Encapsulated in Zr-based Metal-Organic Frameworks for Highly Selective CO2 Hydrogenation to Methanol.
We show that the activity and selectivity of Cu catalyst can be promoted by a Zr-based metal-organic framework (MOF), Zr6O4(OH)4(BDC)6 (BDC = 1,4-benzenedicarboxylate), UiO-66, to have a strong interaction with Zr oxide [Zr6O4(OH)4(-CO2)12] secondary building units (SBUs) of the MOF for CO2 hydrogenation to methanol. These interesting features are achieved by a catalyst composed of 18 nm single...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 44 33 شماره
صفحات -
تاریخ انتشار 2015